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Holonomic mechanical systems with n degrees of freedom are considered in Routh variables, and the equations of motion consist 
of k < n Lagrange-type equations and 2(n - k) Hamilton-type equations. Expressions are presented in Routh variables for the 
D'Alembert-Lagrange, Hamilton-Ostrogradskii and Hamilton (third form) variational principles, as well as the Holder principle 
and the principle of least action in its Lagrange and Jacobi forms. © 2001 Elsevier Science Ltd. All rights reserved. 

1. T H E  D ' A L E M B E R T - L A G R A N G E  P R I N C I P L E  
AND R O U T H ' S  E Q U A T I O N S  

The fundamental variables characterizing the state of a holonomic mechanical system with n degrees 
of freedom at a certain time t are usually either Lagrange variables - generalized coordinates and 
velocities qi and ill = dqi/dt (i = 1 . . . . .  n), or Hamilton variables - generalized coordinates and momenta 
qi andpi = OL/OcIi (i = 1 . . . .  , n), where L(t ,  q, il) = T(t, q, il) + U(t, q) is the Lagrangian, T is the kinetic 
energy and U is the force function of the applied forces• 

Routh [1] proposed taking as fundamental variables part of the Lagrange variables qj, Oi (J = 1 . . . . .  
k < n) and part of the Hamilton variables p, (s = k + 1, . . . ,  n). 

Let the kinetic energy of the system be a positive-definite quadratic form 

• l n 
T(q, q) = -~ i,~,lj= aij(ql . . . . .  qn )qiclj (1.1) 

Then 

Ps = ~ asiqi, s = k + l  . . . . .  n ( 1 . 2 )  
i=1 

Since 

D = det(~)2L / ~Os~Or)7,r=k+l ~lt~0 

all the velocities its may be expressed through Eqs (1.2) in terms ofps  and @ and one obtains [2] 

k 

qs = ~ bsrPr -  ~ ~sjOj, s = k + l  .. . . .  n (1.3) 
r=k+l j=l 

where 

b$r AF$ = - - 5 ,  Ts j= ~.bsrarj;  j = l  .... k; s = k + l  ..... n 
r=k+l 

andArs is the cofactor of the element ars of the determinant D. Substituting expressions (1.3) into relation 
(1.1) we obtain an expression for the kinetic energy of system (1.1) in Routh variables 

1 ~ , . .  1 " 
T*(qi,cl),Ps)=-~ 2., aijqiqj + ~  ~=k+lbrsPrPs 

i,j=l r,s 
(1.4) 

which does not contain terms with products of qj and Ps, where 
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a O=aij L b~sarjasi; i , j = l  ..... k 
r,s=k+l 

Both quadratic forms on the right-hand side of Eq. (1.4) are positive-definite. 
Routh's function is defined by the formula 

R(t, qi,~lj,Ps ) = L(t, qi,gli ) -  ~ ilsPs 
s = k + l  

in whose right-hand side all velocities qs are expressed in terms of qy, p~, so that 

1 k k ~ 1 n 2 
~)= aq(liqj + ~" ~[sjqjPs -- --  y~ brsPrPs + U = ~ R s R(t 'qi 'c lJ 'Ps)=2i ,  I j=l s=k+l 2 r,s=k+l s=0 

where 

(1.5) 

(1.6) 

] ,~k * . . k 

R2 =-2 2., aijqiqj, RI = ~, ~ TsjiljPs, Ro = U - I  ~, brsprp s 
2 i,j=l j = l  s = k + l  2 r.s=k+l 

Equating the variations of both sides of Eq. (1.5), we obtain the relations 

~R bL ~R bL ~R 
~qi Oqi O(lj ~Oj ~Ps -qs;  i = !  ..... n; j 1 ..... k; s = k + l  ..... n (1.7) 

using which we can express the general equation of dynamics in terms of Routh variables 

Z ~ Qj 8q j +  Y. Qs 8qs=O 
y=] Oglj bqj s=k+lt, dt bqs 

(1.8) 

where Qi(t, qi, @ps) (i = 1 . . . .  , n) are generalized non-potential forces. Equation (1.8) will hold whatever 
the virtual displacements &/i, which are independent undefined quantities. 

Relation (1.8) expresses the D'Alembert-Lagrange differential variational principle in terms of Routh 
variables. 

Since the variations t~/i a r e  arbitrary and independent, Eqs (1.8), taken together with the last group 
of Eqs (1.7), yield Routh's equations of motion 

d ~R ~R 
dt bOj ~qj - Qj' j = 1 ..... k (1.9) 

dp s O R + Q , ,  dq, _ bR . 
dt = Oqs dt OPs ' s = k + l  ..... n (1.10) 

Routh's equations consist of k Lagrange-type second-order differential equations and 2(n - k) 
Hamilton type first-order differential equations. Of course, the system of Routh equations is equivalent 
to the systems of both Lagrange equations and Hamilton equations. Which of these systems is actually 
used is generally unessential though there may be various considerations in favour of the use of one 
system of equations or another. 

When Routh's function R(qi, {lj,Ps) does not depend explicitly on time and there are no non-potential 
forces, that is, Qi = O(i = 1 . . . . .  n), Eqs (1.9) and (1.10) have an energy integral 

k .  ~gR (1.11) q) ~ R= R 2 - R 0 = T*-  U = h = const 
i= I  

as is easily verified, either by multiplying each of Eqs (1.9) by q ,  summing the results over all j = 
1 . . . . .  k and using Eqs (1.10), or by differentiating the function R'~qi, ilj, Ps) with respect to time along 
trajectories of Eq. (1.10) and using Eqs (1.9). Different expressions for integral (1.11) are obtained by 
using formulae (1.4) and (1.6). 
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If the function R does not depend explicitly on some of the coordinates qr and the corresponding 
generalized forces Qr vanish, while the expressions for the other generalized forces are independent 
of qr, such coordinates are called cyclic - corresponding to them we have first integrals of Eqs (1.9) 
and (1.10) 

Pr  = Cr ( 1 . 1 2 )  

where Cr are arbitrary constants. 
Note that if the coordinates q,(s = k + 1 . . . . .  n) are cyclic, then the energy integral (1.11) of the 

system may be treated in the same way as the energy integral of the Lagrange subsystem (1.9) with 
kinetic energy R 2 (qj, [Ij) and potential energy -Ro(qj, c,), where the quadratic form 

1 ¢1 
- -  ~" brscrC s 
2 r,s=k+l 

occurring in the latter is the kinetic energy of the Hamilton subsystem (1.10). This treatment corresponds 
to Hertz's conception [3] of the kinetic origin of potential energy. 

2. THE H A M I L T O N - O S T R O G R A D S K I I  P R I N C I P L E .  
THE T H I R D  F O R M  OF H A M I L T O N ' S  P R I N C I P L E  

We will now derive the integral variational principles in Routh variables. We will integrate Eq. (1.8) 
with respect to t within certain arbitrarily chosen limits t o and t 1. 

Integrating by parts the terms containing time derivatives and taking the second group of Eqs (1.10) 
into consideration, we obtain the relation 

j=l Oglj ~qj + ~ Ps~qs - ~ ~ OR + - - s q . ] +  
s=/+l 'o '0 )=1 ~qjSq) Dq) J)  

+_" (0., 0. ) ] 
Z IX"-  q ,+  = s=k+l\ aqs ~Ps 5ps + psSits + gls~ps +~i=l Qi~qi dt 0 

which leads to the equality 

~ R+ glsPs + Qi~qi dt=O; g)qi=O for t=to,q; i=1  ..... n (2.1) 
t o s = k + l  

This equality is the expression in Routh variables of the Hamilton-Ostrogradskii variational principle, 
which is a necessary and sufficient condition for the motion of a system to be possible under the action 
of applied forces. 

In the Hamilton-Ostrogradskii principle, the actual motion is compared with varied motions on the 
assumption that the system has the same configurations at the initial and final instants of time. 

We will show that condition (2.1) yields Routh's equations. When doing so, however, some caution 
is necessary, since the variations of qj and Oj cannot be regarded as independent [4]: if variations 6q7 of 
class C2 are given at each instant of time, then the variations N)j are defined by the equations 

d 
80j =-~ttSqj, j = 1 ..... k 

Let us characterize the motion of the system by the displacement of a representative point in the 
(2n + 1)-dimensional extended phase space of the variables ql . . . . .  qn, 0h, -.-, 6% Pk+l . . . . .  pn, t. 
Condition (2.1) implies that 

5 R(t, qi,o3j,Ps)+ ClsPs + Qi~li dt=O; 
to s=k+ l  

5qi = 0  for t=to,tl; i=  I ..... n 
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in the family of curves qi(t), o~j(t),ps(t ) satisfying the differential equations 

t)j=o~i, j = l  ..... k (2.2) 

where the values of qi and t at the initial and final points are fixed, while those of o~j and p~ remain free. 
By the rule of Lagrange multipliers 

I 8 R(t, qi,tOj,Ps)+ Y, ClsPs +Y~ QiSql + Y~ ~ ' j ( O j - - t d ) j )  d t = O  
t O s=k+l .J i=1 j=l  

for arbitrary variations of the variables qi, o)j, Ps, where the functions Xj(t) have to be determined. Varying 
and integrating by parts, we obtain 

to i=t ~q/8qi + j=IZ ~ ~i0)j + s=k+lk,2" [-q"-OPs OPs + ?lsSPs + PsS?ls + i~ QiSqi + 

+ Y. ~ , j (5~t j -80~j)dt:  ~, ~,j~qj + =~+psSqs + ~ O R - L j  +Qj 8qj + 
j=l j=l s to t 0 j=l 

+ y. OR _~,. 8t.oj +s I s=k+l\Oqs dt ~. "~--'+Os 8Ps+ I-Qs 8qs d t : O  

The conditions for integral (2.1) to vanish may be written as follows, in view of (2.2) 

d~,j aR aR dPs 3R dqs aR 
= +Qj,  ~,j = - - ,  = +Qs, - dt aq) 3Clj dt aqs dt Oqs 

from which Routh's equations (1.9) and (1.10) follow, 
When there are no non-potential forces, Qi = O(i = 1 . . . . .  n), the third form of Hamilton's principle 

follows from the relation (2.1) 

8 ~ R + ClsPs dt = 0; ~qi = 0 for t = t 0, t I ; i = l ..... n (2.3) 
t o s=k+l 

unlike the first form in Lagrange variables and the second form in Hamilton variables, respectively 

' 'fi ) 
8 S Ldt = 0 and 8 S qiPi -- H dt = 0; ~qi = 0 for t = t o, tl; i = I ..... n (2.4) 

to to \i=1 

where the Hamiltonian is 

H(t, qi,Pi) = ~, iliPi - L(t, qi,cli) (2.5) 
i=1 

For actual motion along the so-called "direct" path, along which the system may move in a given 
force field, the functions qi(t)(i = 1 . . . . .  n) and p,(t)(s = k + 1 . . . . .  n) satisfy Routh's equations (1.9) 
and (1.10). All other sufficiently close paths passing through two given points of the configuration space 
are known as "indirect" paths. It was proved above that for the direct path the Hamilton action in Routh 
variables 

t l  n , 

has a stationary value compared with the indirect paths. 
The converse is also true: if there is some path for which Eq. (2.3) holds, that path must be direct. 

Indeed, as shown previously for (2.1), one can similarly derive Eqs (1.9) and (1.10) for Qi = O(i = 
1 . . . . .  n) from condition (2.3). 
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We also note that Eqs (1.9) and (1.10) for Qi = O(i = 1, . . . ,  n) are Euler's equations of variational 
problem (2.3) in Routh variables. 

At first sight, one can show, using Eqs (2.5) and (1.5), that the third form (2.3) of Hamilton's principle 
in no way differs from the first and second form (2.4) of the principle. However, this is true only for 
paths qi = qi(t) and Pi = Pi(t) such that the functions qi(t) and pi(t) satisfy the equations Pi = OL/Ocli 
(i = 1 . . . . .  n), but in the general case this is not so [2]. 

The following difference between variational problems (2.3) and (2.4) must also be borne in mind. 
In the first form of the principle, the curves qi(t) (i = 1 . . . . .  n) are considered in the extended (n + 1)- 
dimensional coordinate space passing through two given points A o(to, qO) and A l(tl, q l), where the initial 
and final times to and q, as well as the initial and final positions of the system, q0 and ql, are fixed in 
advance. In the second and third forms of the principle, admissible indirect paths are sufficiently close 
arbitrary curves in the (2n + 1)-dimensional extended phase space of the variables t, qi,Pi (in the second 
form) or the variables t, qi, ctj, Ps (in the third form) passing through the points B0 and B1 or Co and 
C1, respectively, at times to and q, for fixed initial and final values of the variables t and qi and 
arbitrary values of 0j, Ps. These curves may not, in general, satisfy the relations Pi --- ~L/c)cti. These 
three integrals have the same values for the actual motion in each specific case, but while the integral 
of the first form may reach a minimum, the integrals of the second and third forms for the same problem 
may have neither maximum nor minimum [4]. It should also be noted that, unlike the points A0 
and A1, the points B0 and B1 or the points Co and C1 cannot be chosen arbitrarily, since in the 
general case a direct path cannot be defined through two arbitrary points of the extended phase space: 
the points B0 and B 1 or Co and C 1 are chosen on the same direct path for which Hamilton's principle 
is formulated [2]. 

Thus, principle (2.3), occupying a position intermediate between the forms (2.4), is of independent 
value because of the assumptions concerning the arbitrariness and independence of the variations 8qi 
and 8ps within the interval [to, tl]. 

When the coordinates q, (s = k + 1 . . . . .  n) are cyclic, first integrals of the form (1.12)p, = cs exist. 
I f  one then considers only variations that leave the generalized momenta p~ = c s constant, then, for 
fixed initial and final positions of the system, 

t l  t 1 

~ I ~. ?lsPs dt= ~, PsS I ?Is dt=O 
t o s=k+1 s=k+l to 

and Hamilton's principle (2.3) takes the following form [5, 1]. 

t l  

8 ~ R(t, qi' qi' cs)dt = 0; 
Ill 

~qj = 0 for t = t o,tl; j = 1 ..... k (2.6) 

3. H O L D E R ' S  P R I N C I P L E  

In principles (2.1), (2.3) and (2.4), we considered synchronous variations: a point P on the direct path 
at time t was associated with the point P '  on the indirect path corresponding to the same instant of 
time. This was possible because motions along the direct and indirect paths took place within the same 
time interval tl - to. 

We will now consider asynchronous variation, when a point qi (i = 1 . . . .  , n) on the actual trajectory 
at time t is associated with a point qi 4- ~]i on the varied trajectory at time t + St. The variations 8qi 
and 8t are assumed to be functions of time of class C2, and moreover the relations between the Cartesian 
and generalized coordinates of the system to not involve the time t. 

Let us evaluate the integral on the left-hand side of (2.1). Using the formula 

dt = 5 q i -  ili St, i = l  .. . . .  n 

and integrating by parts, we get 

Ir 1( ) ~ R+ Y, Cl.~-Ps + y ,  QiSqi dr= ~ OR -~a Sqj + ~. p.,~Sq.~ 
ill L \ s=k+l ] i=l j=l tJj s=k+l to 

+ 
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+J n d 

,,, [_at j=l d t aq  i aq/ Q) 5q./ .,.=t+,k. a t  aq,. Q, 5¢ ,+  

£ (dq"+--l~P.,.-I~ . ~. il,.ps)d~t]dt (3.1) + y. • 3R 3R 

.,.=a.+,~, dt Op.,. ) /=1 " ,'=t+l 

If the variations 8qi (i = 1 . . . .  , n) are virtual displacements at each time t, where &/i = 0 at times to 
and q, then, by Eqs (1.9) and (1.10), we obtain the equality 

I ~) R+ =~k+flsP s + ~ ". X ilsPs]--~It Qi6qi dt=O 
'0 s j=l q: 3qj +,=k+l ) d t  - 3t i=1 

6qi=O for t = t  o , q ;  i = l  . . . . .  n (3.2) 

which expresses HOlder's principle [4, 6] in Routh variables. It holds provided that the virtual displace- 
ments &/i ~ C2 relative to the actual motion exist at each instant of time and vanish at times to and q, 
while the functions ~St ~ C z do not necessarily vanish at times t o and t v 

Note that in the case of synchronous variations, when 6t --- 0, equality (3.2) implies the 
Hamilton-Ostrogradskii  principle (2.1) and, additionally, if also Qi = 0 ( i  = 1,  . . . ,  r t ) ,  it implies 
Hamilton's principle (2.3). 

4. L A G R A N G E ' S  P R I N C I P L E  

Let us assume that Routh's function R(qi, qj,Ps) does not depend explicitly on time, and that there are 
no non-potential forces Qi, so that energy integral (1.11) exists. The system itself can chose its motions 
from motions with a given reserve h of total energy, so that we need only compare trajectories that 
satisfy condition (1.11) [7]. 

Given the conditions OR/~t - O, Qi = O(i = 1 . . . . .  n), HOlder's principle (3.2) takes the form 

I/ /( /:t] S ~ R+ _.~k+qsp s + ~'. " OR ~ glsPs 5t dt=O 
to ~ j=l 3 ~  s=k+l 

~qi = 0 for t = to, q; i = I ..... n 

(4.1) 

Integral (1.11) implies the relation 

~R_h R =Z ,)j b,)j 

Taking this into consideration, we can write (4.1) in the form 

S 8 ~ i l i a +  ~ ~lsPs + q j x  -:'-. + ~, qsPs ~t - ( t l - t o ) S h = O  
t o j = l  Oqj s.~k+l oqj s = k + l  

whence we obtain Lagrange's principle of least action in Routh variables for 6h = 0 and fixed end points 
(in q-space) 

J q J - - + s  ' . . . .  
to j=l Oily iqsp s dt = O; ~qi 0 for t to,h; i I . . . .  n; ~ih=0 (4.2) 

The actual motion of a conservative holonomic system between two given configurations differs 
from the kinematically possible motions that can take place between the same configurations and 
with the same total energy h, in that for actual motion the total variation of the Lagrange action 
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to j=l bit i s flsPs dt (4.3) 

has a stationary value. 
Note that, as a consequence of the energy integral, the time in which the system transfers from one 

position to another depends on the path and is determined by it, so that the upper limit t I in integrals 
(4.2) and (4.3) is variable and the variations of integrals (4.2) and (4.3) must be total. 

Taking relations (1.4), (1.6) and (1.7) into account, we have the following obvious equality 

k ~R 
E i6--+ Z '~Ps = 2T* (4.4) 
j=l Oqj s---k+l 

as a consequence of which Lagrange's principle (4.2) may also be expressed in the form 

tl  

k S 2T*dt=O; Sqi=O for t=to,tl; i=1  ..... n; ~ih=0 (4.5) 
to 

which is similar to its form in Lagrange variables (T = T') .  
The principle of least action, like Hamilton's principle, expresses a necessary and sufficient condition 

of actual motion, and it may be used to derive the equations of motion. Indeed, let us construct 
Lagrange's function with multiplier ~. for the conditional variational problem (4.5) [7] 

F = 2T* + ~,(T* - U - h) 

The transversality condition for a sliding end-point at the upper limit of the integral 

n OF 
F - ]~ qi = 0 

i=|'= 

leads to the equality (1 + ~)T* = 0, from which we find ~. = -1 and, bearing (1.5) in mind, we obtain 
the function 

F = R + ~ ~lsPs + h 
s = k + l  

Consequently, Euler 's equations for the variational problem with integrand F, considered in Routh 
variables, have the same form as Eqs (1.9) and (1.10) with Qi = 0 (i = 1 . . . . .  n). 

When the coordinates qs (s = k + 1 . . . . .  n) are cyclic and first integrals of the form (1.12)ps = G 
exist, Lagrange's principle of least action, considered for variations that leave the values of the momenta 
Ps constant, and on the assumption that the initial and final positions of the system are fixed, takes the 
form 

t~ k O R  dt 
8 S 'y'. it.i = O, R = R(qj, {lj, Cs) 

to j=l 3glj 

Sh=0 ,  ~Sq)=0 for t=to, q; j = l  . . . . .  k 

(4.6) 

4. J A C O B I ' S  P R I N C I P L E  

Using the energy integral, Jacobi [8] eliminated the time from Lagrange's principle and reduced 
everything to spatial elements, thus placing the principle of least action in a geometrical context. 

The energy integral and the expression for the Lagrange action are 

tl 

T = U + h = a ] T ( U + h ) ,  I 2 T~f~+h)dt (5.1) 
to 
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Owing to the existence of the energy integral, there is a complicated relation between the variations 
of the variables t and qi, (li [9]. To avoid this difficulty, we choose a new independent variable x whose 
values vary between constant limits x0 and ~1, independently of time. For example, one can take as this 
variable one of the coordinates qi, which is a monotone function o f t  in the interval under consideration 
[8, 4]. During the motion of the system, qi(i  = 1 . . . . .  n )  will be functions of the variable ~, whose 
derivatives with respect to that variable will be denoted by q~ = dqi/d'c. 

Taking equality (1.1) into consideration, we put [9] 

27"(qi, qi ) = aijqiqj 
i,j=l 

We then have 

T = = U + h; = T (5.2) 

Substituting the last expression of (5.2) into the action (5.1) and using Eq. (4.5), we obtain Jacobi's 
principle of least of action in Lagrange variables 

8 ~ 247"(U + h)dx = 0; ~)qi = 0 for x = "~0,1:1; i = 1 ... . . .  n; 8h = 0 (5.3) 
"(2 

which is geometric in nature [7, 9]. 
In actual motion, the Jacobi action takes a stationary value compared with its values for infinitely 

close neighbouring motions that take the system from the same initial position to the same final position, 
on the assumption that Eqs (5.1) remain valid with the same value of the constant h as in the actual 
motion. 

The problem of determining the trajectory of the representative point in q-space is thus reduced to 
problem (5.3) of variational calculus with fixed end-points. The velocity of motion of the representative 
point along the trajectories is found from the energy integral [7, 9]. 

Finally, we will express Jacobi's principle in Routh variables. Comparing principle (5.3) with the first 
form (2.4) of Hamilton's principle, we conclude that the integrand in (5.3) may be taken as a new 
Lagrangian L(q i ,  q'i) with independent variable ~ instead of the time t and velocities q~ [4]. By analogy 
with the function (1.5), we introduce a new Routh function 

R ( q i , q j , P s )  = [ ' ( q i , q i ) -  qsPs, L(q i ,q i )  = 2 U + h )  (5.4) 
s = k + l  

where the momenta are 

[3~ = Oq'~ = Oq'~ _ , s = k + l  . . . . .  n 

Comparing the variations of both sides of Eq. (5.4) we find relations analogous to Eqs (1.7). 
As a result, we obtain an expression for Jacobi's principle in Routh variables: 

'( i /  R ( q i , q j , P s ) +  qsP, d r = 0 ;  8 q i = 0  for x='~0,xl;  8 h = 0  (5.5) 
X0 s=k+ l  

The equations of the extremals of problem (5.5) are Routh's equations 

d ak ak d ~ , _ 0 k  , ok 
d ' r O q ~ - O q j  d'r Oqs qs OPs j = l  ..... k; s k + l ,  n (5.6) 

from which, returning to the independent variable t via the last relations in (5.2), we obtain Lagrange's 
equations and the equivalent equations (1.9) and (1.10) with Qi = O(i = 1, . . . ,  n) .  
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